8 found
Order:
  1.  84
    The quantum physics of synaptic communication via the SNARE protein complex.Danko D. Georgiev & James F. Glazebrook - 2018 - Progress in Biophysics and Molecular Biology 135:16-29.
    Twenty five years ago, Sir John Carew Eccles together with Friedrich Beck proposed a quantum mechanical model of neurotransmitter release at synapses in the human cerebral cortex. The model endorsed causal influence of human consciousness upon the functioning of synapses in the brain through quantum tunneling of unidentified quasiparticles that trigger the exocytosis of synaptic vesicles, thereby initiating the transmission of information from the presynaptic towards the postsynaptic neuron. Here, we provide a molecular upgrade of the Beck and Eccles model (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Computational capacity of pyramidal neurons in the cerebral cortex.Danko D. Georgiev, Stefan K. Kolev, Eliahu Cohen & James F. Glazebrook - 2020 - Brain Research 1748:147069.
    The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorphoOrg database, and quantified basic dendritic or axonal morphometric measures in different regions and layers of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Launching of Davydov solitons in protein α-helix spines.Danko D. Georgiev & James F. Glazebrook - 2020 - Physica E: Low-Dimensional Systems and Nanostructures 124:114332.
    Biological order provided by α-helical secondary protein structures is an important resource exploitable by living organisms for increasing the efficiency of energy transport. In particular, self-trapping of amide I energy quanta by the induced phonon deformation of the hydrogen-bonded lattice of peptide groups is capable of generating either pinned or moving solitary waves following the Davydov quasiparticle/soliton model. The effect of applied in-phase Gaussian pulses of amide I energy, however, was found to be strongly dependent on the site of application. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Quantum transport and utilization of free energy in protein α-helices.Danko D. Georgiev & James F. Glazebrook - 2020 - Advances in Quantum Chemistry 82:253-300.
    The essential biological processes that sustain life are catalyzed by protein nano-engines, which maintain living systems in far-from-equilibrium ordered states. To investigate energetic processes in proteins, we have analyzed the system of generalized Davydov equations that govern the quantum dynamics of multiple amide I exciton quanta propagating along the hydrogen-bonded peptide groups in α-helices. Computational simulations have confirmed the generation of moving Davydov solitons by applied pulses of amide I energy for protein α-helices of varying length. The stability and mobility (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Thermal stability of solitons in protein α-helices.Danko D. Georgiev & James F. Glazebrook - 2022 - Chaos, Solitons and Fractals 155:111644.
    Protein α-helices provide an ordered biological environment that is conducive to soliton-assisted energy transport. The nonlinear interaction between amide I excitons and phonon deformations induced in the hydrogen-bonded lattice of peptide groups leads to self-trapping of the amide I energy, thereby creating a localized quasiparticle (soliton) that persists at zero temperature. The presence of thermal noise, however, could destabilize the protein soliton and dissipate its energy within a finite lifetime. In this work, we have computationally solved the system of stochastic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. Quantum tunneling of three-spine solitons through excentric barriers.Danko D. Georgiev & James F. Glazebrook - 2022 - Physics Letters A 448:128319.
    Macromolecular protein complexes catalyze essential physiological processes that sustain life. Various interactions between protein subunits could increase the effective mass of certain peptide groups, thereby compartmentalizing protein α-helices. Here, we study the differential effects of applied massive barriers upon the soliton-assisted energy transport within proteins. We demonstrate that excentric barriers, localized onto a single spine in the protein α-helix, reflect or trap three-spine solitons as effectively as concentric barriers with comparable total mass. Furthermore, wider protein solitons, whose energy is lower, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. SNARE proteins as molecular masters of interneuronal communication.Danko D. Georgiev & James F. Glazebrook - 2010 - Biomedical Reviews 21:17-23.
    In the beginning of the 20th century the groundbreaking work of Ramon y Cajal firmly established the neuron doctrine, according to which neurons are the basic structural and functional units of the nervous system. Von Weldeyer coined the term “neuron” in 1891, but the huge leap forward in neuroscience was due to Cajal’s meticulous microscopic observations of brain sections stained with an improved version of Golgi’s la reazione nera (black reaction). The latter improvement of Golgi’s technique made it possible to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  7
    Scale-free architectures support representational diversity.Chris Fields & James F. Glazebrook - 2020 - Behavioral and Brain Sciences 43.
    Gilead et al. propose an ontology of abstract representations based on folk-psychological conceptions of cognitive architecture. There is, however, no evidence that the experience of cognition reveals the architecture of cognition. Scale-free architectural models propose that cognition has the same computational architecture from sub-cellular to whole-organism scales. This scale-free architecture supports representations with diverse functions and levels of abstraction.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark